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Highlights: 

 Drought conditions in Southern California persist through 2016 despite El Niño presence   

 Palmer Z-Index will be 0.715 stdev. below historical records during the 2016 El Niño   

 Less rain is observed during 2015-2016 El Niño season compared to 1997-1998 one 
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Abstract  

We use recurrent neural networks (RNNs) to investigate the complex interactions between the 

long-term trend in dryness and a projected, short but intense, period of wetness due to the 2015-

2016 El Niño. Although it was forecasted that this El Niño season would bring significant 

rainfall to the region, our long-term projections of the Palmer Z Index (PZI) showed a continuing 

drought trend, contrasting with the 1998-1999 El Niño event. RNN training considered PZI data 

during 1896-2006 that was validated against the 2006-2015 period to evaluate the potential of 

extreme precipitation forecast. We achieved a statistically significant correlation of 0.610 

between forecasted and observed PZI on the validation set for a lead time of 1 month. This gives 

strong confidence to the forecasted precipitation indicator.  The 2015-2016 El Niño season 

proved to be relatively weak as compared with the 1997-1998, with a peak PZI anomaly of 0.242 

standard deviations below historical averages, continuing drought conditions. 

1. Introduction 

The 2015-2016 winter season witnesses two high-intensity regional/global phenomena namely 

the drought and El Niño. Beginning with late 2011, California has been facing its most intense 

and severe drought since historical recordings began in 1895 (Richman et al., 2015). This 

drought is often compared to other significant droughts in California history, including the 

particularly long-lasting Dust Bowl drought of the late 1920s to early 1930s and the droughts in 

1976 - 1977 and the late 1980s to early 1990s (Robeson, 2015). Griffin et al. (2014) found that 

although the recent drought is not the longest drought in recorded history, it is the singular most 

extreme one when comparing rainfall deficits. Recently, over 70% of the state suffered extreme 

and exceptional drought where normally wet seasons of the yearly climate cycle have been 

underwhelming (Richman et al., 2015; Robeson, 2015). The uniqueness of this drought season 

was confirmed by analyzing other drought predictors such as abnormal temperatures (Jeong et 

al., 2014; Shukla et al., 2015). Howitt et al. (2015) estimated the economic damage to the 2015 

agriculture caused by the drought to be $1.8 billion, with a total statewide economic cost for the 

same period of $2.7 billion. This is a 23% increase compared to the $2.2 billion in losses 

incurred in 2014 due to similar drought conditions (Howitt et al., 2014). Furthermore, it is also 

estimated that as many as 21,000 agricultural and related jobs were lost in 2015, up 23% from 

17,000 jobs lost in 2014. According to the Center for Watershed Sciences at Davis, an additional 

$2.8 billion and 21,400 jobs are projected to be lost due to drought in 2016 if conditions persist. 

Apart from socioeconomic losses, environmental losses are also anticipated. For example, as 

many as 58 million trees are in severe risk of dying in 2016 causing disastrous impacts on 

California ecology (Asner et al., 2015). Cook et al. (2015) suggests that the current drought 

trends could be the beginning of a larger drought taking place over the first half of the entire 21st 

century.  On the other hand, the winter leading into 2016 was expected to bring heavy rain 

resulting from another powerful weather phenomenon, namely the El Niño Southern Oscillation 

(ENSO). ENSO affects tropical meteorological fields yet its influence is exerted by changing the 

largescale Walker circulation and associated convection and precipitation patterns (Slemr et al., 

2016). ENSO is a periodic fluctuation in global climate with of a period between 2 to 7 years, 

and is strongest throughout the boreal winter season of peak years (Capotondi et al., 2014). The 

ENSO effect on different regions of the globe is highly varied, but in California, strong El Niño 

seasons often manifest as periods of extreme and anomalous precipitation (El-Askary et al., 

2004; El-Askary et al., 2013). A recent past El Niño event, during the winter of 1997 – 1998, led 

to extreme flooding in Los Angeles and caused multiple deaths and billions of dollars in flooding 
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and related damages (Changnon, 1999). The (2015 – 2016) El Niño season has been projected by 

many to be abnormally strong (Hoell et al., 2016; Zhenya et al., 2015; Climate.gov, 2015). 

However, the exact strength of that season is still investigated in the context of the previous 

strong (1997-1998) El Niño season. It is noteworthy that El Niño drives on average only about 

6% of the precipitation variability in California (Savtchenko et al., 2015).  It is not guaranteed 

that El Nino has the potential to resolve the accumulated deficit of precipitation, which is 

presently equivalent to an entire year of precipitation. However, chances may improve in a 

strong El Niño that also coincides with the peak of the wet season in California (December-

February). Moreover, there is a large geographical difference in the anticipated impact of El 

Niño on California (Piechota and Dracup 1996; Piechota et al., 1997). Being able to accurately 

gauge the El Niño intensity is important for agricultural, development, and public safety 

planning applications. Despite several record examples of strong El Niño seasons, we believe 

that there are complex interactions of ENSO effects with a drought as intense as the current one 

affecting California. 

It is known that California prolonged drought resulted from a multi-year precipitation decline 

and anomalous warm temperatures, that in turns resulted from anomalously persisting high 

pressure in the East Pacific, which significantly changed the normally observed atmospheric 

circulation patterns. In this research we applied Artificial Neural Networks (ANNs) with 

recurrent topologies (RNNs), as the more natural topology for exploring time series data, in an 

attempt to project the local PZI for California Climate Divisions 6 & 7 which are California 

south coast drainage and southeast desert basins, respectively. Common applications of ANNs 

involve feed-forward networks trained with backpropagation (Cigizoglou et al., 2004). ANNs 

have been applied several times to rainfall and precipitation forecasting (Nastos et al., 2014; 

Bodri et al., 2000; Luck et al., 2000; Silverman et al., 2000; Sakellariou et al., 2004; Cigizoglou 

et al., 2004; Moustris et al., 2011). Badjate et al. (2009) explored RNNs for predicting 

precipitation and chaotic time series like sun spot occurrences. Different ANN topologies has 

been used in order to forecast extreme precipitation events and total precipitation levels, 

including recurrent Elman Networks (Maqsood et al., 2004) and Long-Term Short-Term 

Recurrent models (Nastos et al., 2014).  

2. Data  

This work aims at refining precipitation projections for California Climate Divisions 6 & 7, 

representing southern California; during the (2015-2016) El Niño season by means of RNNs 

exploiting the PZI. We are projecting on the regional PZI, which depicts moisture conditions for 

the current month, then compare the forecasts of the current season with what was observed and 

forecasted for the 1997-1998 season. Although precipitation data could be considered for our 

climate divisions, the raw monthly precipitation levels display a strong natural monthly 

intermittency that is not completely relevant to our study.  While this monthly intermittency and 

variation is quantitatively legitimate, we wish to study and project longer-term trends. 

 Therefore, we chose the PZI as a parameter that is not only more physically meaningful, but also 

is more resistant to monthly intermittency and spurious variation. We are not substituting PZI, a 

different drought indicator, for precipitation PZI is a broader hydrologic measure that integrates 

soil moisture helping in addressing hydrologic drought. We can further add that because of its 

multivariate origins, PZI is no doubt correlated with the causes of the precipitation anomalies, 

despite the drought not being the direct physical cause of precipitation anomalies in California. 
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2.1. Palmer Z-Index 

The Palmer Z-Index is a memoryless drought index that measures short-term drought on a 

monthly scale based on ground data readings. Palmer (1965) established the widely adopted set 

of Palmer indices for drought analysis in research and industry applications. He proposed a 

system involving a weighted sum of various calculated and empirical factors, including soil 

moisture capacity, total precipitation and potential evapotranspiration, moisture recharge, run-

off, and moisture loss.  From these calculated or measured numbers, a weighted index (motivated 

by the relative contribution of each factor in drought severity) is calculated with respect to 

historical averages and behavior of each individual attribute. Higher Z values indicate moist 

conditions, and lower Z-values typically indicate drought conditions of short or long term. The 

PZI is calculated independently between each month, which makes it a suitable candidate for 

testing predictive models. The PZI computation begins with a climatic water balance using 

precipitation and temperature records (Szep et al., 2005). Since precipitation is used in PZI 

construction, and since their actual values vary together with a correlation of 0.70 and the 

anomalies with a correlation of 0.77, we believe that PZI can be viewed as a sensitive 

precipitation indicator reflecting more meaningful physical conditions than raw precipitation. 

The high correlation shows the general relationship of both parameters, averaging out the 

intermittent monthly effects in the raw precipitation data.     

2.2. Data Acquisition 

The historical Z-indices for California Climate Divisions 6 and 7 were gathered from the 

Global Historical Climatology Network (GHCN)
 
nClimDiv data set (ftp://ftp.ncdc.noaa.gov/pub/ 

data/cirs/climdiv/), which gives per-climate division aggregates for raw and processed surface 

data measurements. Values in the nClimDiv data set are calculated using area-weighted averages 

of points on a 5 km-resolution grid overlaid across each division. This resolution is high enough 

to ensure sufficient spatial sampling, especially for the climate divisions being analyzed in this 

paper (Vose et al. 2014). Points are assigned climate data based on spatial interpolation of nearby 

stations, with topographic and network variability taken into account in the interpolation process. 

GHCN subjects the data to regular quality assurance reviews to ensure correctness. For 

California South Coast Drainage and South East Desert Basin climate divisions, data from a total 

of 526 and 184 stations respectively,
 
are taken into account and aggregated. Aggregated station 

data are available from January 1895 to January 2016, on a month to month basis, giving 1452 

total data points. The most recent 120 months of data are set aside for validation, and the 

remaining 1332 points are used for training purposes. From the nClimDiv data set, the gathered 

historical Z-indices were shifted to historical monthly averages and re-scaled to have standard 

deviation equal to unity. This is done to remove yearly periodic components in mean and 

variance that might arise in the process of the Z-indices computation. 

3. Materials and Methods 

3.1. Artificial Neural Networks 

ANNs are a class of models roughly said to be inspired by “biological neural networks” – 

that is, the mechanisms and structure of neurons in an animal brain. Models in this family 

typically involve interconnected nodes, which output signals based on a weighted sum of input 

signals. Specialized algorithms for training an ANN involve selecting the proper set of weights 

to model the function or phenomenon in question. These algorithms process training sets of 
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inputs with their known outputs. Different types of ANNs chiefly differ in the topology of the 

internal node graph. The traditional feed forward neural network can be thought of as a universal 

function approximator, and is shown to be able to approximate any function          to 

arbitrary precision with respect to       performance criteria (Hornik, 1990). Feed-forward 

ANNs consist of layers of neurons which receive weighted inputs from the outputs of preceding 

layers. Feed-forward ANNs have seen great success in fields like pattern recognition. However, 

because feed-forward ANNs are inherently structured to approximate functions, they struggle in 

modeling dynamical systems and systems with an inherent temporal component; attempts to do 

so typically entail a large explosion of parameter. To obviate to this problem, the notion of RNN 

families was introduced (Hopfield, 1982; Elman, 1993).  While traditional feed-forward ANNs 

can be fully described as universal approximators of functions, RNN families can be described as 

universal approximators of dynamical processes, and it has been shown that RNN architectures 

can approximate arbitrary Turing machines in the same way feed-forward ANNs approximate 

functions (Hammer, 1998). RNNs add dynamics to traditional ANNs; specifically, they introduce 

an aspect of statefulness to a neural network: outputs from a given input can be influenced not 

only by the current input, but also by the residual state left behind from previous computations. 

This makes RNNs suitable for modeling time series and other such dynamical processes that 

explicitly depend on history. RNNs of different forms have been used in developing powerful 

language models (Sutskever et al., 2011) (Graves, 2013) (Mikolov, 2012), video classification 

(Donahue et al., 2014), image captioning (Vinyals et al., 2014), video captioning (Venugopalan 

et al., 2015), visual question answering (Ren et al., 2015), image generation (Gregor et al., 

2015), and meteorological circulation modeling (Toggweilier et al., 2015). 

3.2. Network and Data Shape 

3.2.1. Network Structure 

We chose, as model for this study to be a recurrent neural network comprised of two 

fully-connected recurrent layers with forty nodes per layer. Each internal layer is fully-

connected, with all outputs redirected to internal inputs. The output of each node is the result of 

the Rectified Linear Unit (ReLU) activation function applied to a weighted sum of both inputs 

from the previous layer and the previous outputs of the layer; these weights are the parameters to 

be trained for. Figure 1 shows only a 3 input node architecture as an example for illustration 

purposes. However, in this work we have used 14 input nodes, where all hidden layers receive 

input from not only their current input, but also the previous outputs of every other node in the 

input layer (including itself). Every node receives input from every node in the previous layer 

and the most recent outputs of the same layer. The network is trained by picking the relative 

strengths and contributions of each connection (arrow), and also the initial output of the hidden 

layers. 
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Figure 1. Internal structure of the recurrent neural network topology with multiple hidden layers 

 

 

For a layer with n inputs and m outputs, the output of node j ∈ 1...m at time t + 1, from an input 

vector x, is: 
 

                

 

 

           

 

 

  

 

where f(x), the Rectified Linear Unit activation function, is 

 

      
     
     

  

 

    is the matrix of weights of influences from the previous layer, and     is the matrix of 

weights of influences from the previous activations of other nodes in that layer. By providing a 

non-linear activation function, we allow our network to exhibit non-linear behavior. Both weight 

matrices are trained parameters of the model, and       , the initial state of the network, is 

also a trained parameter; it is trained to create an adaptable initial condition from which 

prediction begins. For this network, the final output layer is a traditional feed-forward layer (that 

is,             ) with the linear activation function       . 

3.2.2. Long Term Projections 

PZI data for each month is represented as a 14-element vector. The first twelve elements 

are indicator elements, representing the month of the data point where each component is either 0 

or 1. The final two elements are the normalized, scaled PZIs from that month for both climate 

divisions. For training, data vectors are grouped together in contiguous samples of 48 months. 

Each 48-month group is paired with a single two element vector representing the two divisions’ 

PZI data for the month right after the month of the final data vector in the group. Thus, the 

network used has 14 input nodes and 2 output nodes. In order to project several months into the 

future, the projection for the next month is joined together with a 12-element prefix indicating 
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the next month and used to predict the month after. This allows the network to step forward 

several months into the future, despite its ability in providing projections for only the immediate 

following month. This technique uses the RNN as a directed continuous state non-Markov 

feedback generator resembling a continuous space sequence memorizer (Wood et al. 2009), in a 

similar manner as strategy explored extensively by Graves, et al. (2014) to generate curves and 

paths from training data. Hopfield (1982) explored the convergence of steady-states of this 

process. 

3.3. Network and Training Methodology 

To train the neural network, we used the well-known backpropagation through time (BPTT) 

algorithm, training over contiguous samples of history (Mozer, 1995; Werbos, 1999). This 

approach gives the network the ability to be trained to act on influences of up to 4 years into the 

past (though short-term influences will be much stronger). BPTT is a gradient descent algorithm 

that optimizes the weight space by calculating the gradient of the error between model output 

and training data with respect to variations in weights and moving in the direction of negative 

gradient. By adjusting the step size, it is possible to tune our training process to be either quickly 

converging or potentially step past important local minima. For the model described in this 

paper, we chose a step size of 2 × 10
−3

. To train on a contiguous sample of history, we ran the 

network over the entire length of the sample and we took the error value as the sum of the 

squared differences between outputs of the final network and known data for the next month into 

the future. From an initial network with randomly generated weights and       , the network 

is trained over a shuffled collection of contiguous samples. Each full pass over the training set is 

known as an epoch. Accuracy of the model is run against the 150-point validation set of the most 

recent 150 months of weather data. 

3.3.1. Mitigating over-fitting 

Through initial training runs, one sees that the network converges extremely quickly (within 

the two hundred epochs, typically), due to the small size of the network. The limit values tended 

to show a high correlation with training data set (typically, between 0.6 and 0.7 correlation). 

However, these limits were unsatisfactory when run against the validation set. This suggests that 

over-fitting is the main source of model failure. In over-fitting the data, the model fits its 

parameters to the noise of the training data, and not on the signal itself. In order to combat over-

fitting, we utilized standard techniques, including the Gaussian noise injection into the training 

data (Zur et al., 2009), changing the choice of activation function from the sigmoidal logistic 

function to ReLU (Glorot et al., 2011; LeCun et al., 2015) and applying the dropout technique 

(Srivastava et al., 2014). With dropout, it is possible to effectively train what are essentially 

several semi-dependent networks, but on top of a single concise network. The aggregation of 

these results is taken to be the final prediction of the model. 

4. Results 

4.1. Validation 

With these improvements, the networks converge within one or two hundred epochs to 

consistently similar trained states. We also reduced the difference between the training and 

validation data correlations and achieved a consistent results regardless of initial starting state. 

Despite underestimation in rare extreme cases, the network’s output agrees strongly with 
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observed data. Longer historical datasets are necessary for a better training, as the 1895 – 2005 

historical record includes only a few El Niño events to analyze. Although we acknowledge the 

limitations of our effort, we consider the extracted results of the performed methodology quite 

satisfactory in forecasting such extreme values for the next year, based only on historical PZI 

time series. Figure 2 shows the one, two, and three-month forward projections for the 2006 – 

2015 validation set alongside observed values and the corresponding correlation plots. The black 

dashed lines correspond to perfect fit (y = x), while the red solid lines to the least-square fit. The 

total variation in y during the examined period for the 1 month ahead step is explained by the 

linear relationship between x and y represented by y = 0.697x – 0.510, (x) represents the 

observed PZI values and (y) represents the forecasted values. Examining the decline in predictive 

power as the network projects further into the future, we find that the model has statistically 

significant predictive power with correlation coefficients ranging from 0.610 to 0.434 for 

between one to three months ahead, validating it for confident predictions. It is noteworthy that 

for longer-term predictions, the developed RNN tends to overestimate, though in the correct 

direction of variance. Moreover, it is notable that the network validates better as it progresses 

down the timeline, using the first yew years to develop its internal state to gauge the current 

context. 

For our trained networks we found that, after a period of time on the order of one year, the 

state from previous months are forgotten and the network settles into a periodic steady-state 

feedback cycle. However, the projected data can still be analyzed for results until the time when 

the residual influences of the past fade away. Furthermore, analysis of activation profiles of 

internal nodes for RNNs can be shown to yield physically insightful results which will be 

discussed in a future work. 
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Figure 2. Time series correlation plot between observed and forecasted PZI using RNN for climate divisions 6 & 7 

with lead times of 1 month (top), 2 months (middle), 3 months (bottom), starting January 2006. 

4.2. Medium Term Predictions 

Running the forward prediction method from the PZI records leading to January 2016, we found 

that PZI of the following month represents a drier than average record, despite the anticipated the 

wet late fall and early winter season (Hoell et al., 2016; Zhenya et al., 2015; Climate.gov, 2015), 

hence we expect a return to drought conditions. Figure 3a shows a solid comparison between the 

powerful 1997–1998 El Niño season used here as a baseline when comparing with the 2015-2016 

El Niño season. Figure 3b shows the actual observed precipitation levels for the current season 

compared to precipitation for the 1997-1998 El Niño season which confirms the validity of our 

model’s projections of a drier season associated with the 2015-2016 El Niño as compared to the 

1997-1998 one.  
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The thick lines represent the model’s direct output while the light lines show a measure 

of the model’s uncertainty, calculated via a Monte Carlo process simulating stochastic noise in 

subsequent prediction steps to account for potential errors in the model (Figure 3c). The grey 

dashed line is the baseline 1997-1998 El Niño season, superimposed over their respective months 

in the 2015-2016 season presented by the dark dashed lines. The PZI anomaly peaks at 0.242 

standard deviations below the monthly average in May of 2016, and quickly sinks back to 0.924 

standard deviations below monthly average by August of the same year. In total, 2016 will be a 

drier year than average with a −0.715 PZI anomaly for the California South Coast Drainage 

climate division.  

 
Figure 3. (a) Comparing observed and forecasted PZI data for the two El Niño seasons in question (b) Observed 

precipitation totals for California Climate Division 6 for the two El Niño season in question, confirming the low-

precipitation season that the model predicts (c) Detailed look at model outputs projections for PZI for the year 2016 

compared to observed values and predictions for 1998, with model uncertainties. 

 

The projected PZI for 2015-2016, indicates a much weaker season as compared to the 1997-

1998. The data points themselves are contrasted with that several baseline El Niño seasons in 

Table 1. This season can be contrasted with the baseline 1997 – 1998 El Niño season, which saw 

a February 1998 that was 4.13 standard deviations above the average PZI for the month, and a 

1998 that was 1.1 standard deviations higher than that of the average year. It can also be 

contrasted with the 1982 – 1983 El Niño season, which saw a peak anomaly of 2.22 standard 
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deviations above the monthly average in April of 1983, and saw a 1983 that was 1.15 standard 

deviations above the annual average. With confidence, it can be concluded that the 2015 – 2016 

season proves to be underwhelming in precipitation, and that drought conditions will persist past 

this winter season. The worst of the drought has apparently passed since 2013 with an annual 

anomaly of -1.30 and 2014 with -1.17 as compared to 2015 with -0.85, with a projected -0.715 

annual anomaly for 2016, continuing a general trend of slow but steady emergence from the 

current drought season. While immediate predictions towards values one month into the future 

have strong predictive power, it cannot be assumed that longer term forward projections maintain 

the same predictive power.  
 

Table 1. Historical El Niño Palmer Z Index Levels (Anomalies in Standard Deviations) 
Season Peak anomaly Peak anomaly month Annual anomaly 

1957 – 1958 3.03 April 0.5 

1982 – 1983 2.22 April 1.15 

1997 – 1998 4.13 February 1.1 

2009 – 2010 1.1 January 0.45 

2015 – 2016 -0.242 May -0.715 (less confident) 

To clearly show the skill of our proposed method, the correlation between the observed and 

forecasted PZI anomaly, for past known weak to severe El Niño responses according to NOAA, 

is computed and presented in Table 2. P-values are also provided corresponding to the likelihood 

of the null hypothesis that the observed and the forecasted PZI are uncorrelated for the entire 

period under investigation. In other words very low P-values show that the correlation between 

forecasted and observed PZI is statistically significant. The model was intentionally trained on 

the entire history (all years), rather than, on known El Niño years for the purposes of drought 

projection. The main motivation of doing so is to be able to provide the model with more 

information on the behavior of the system in all situations.  Having the model trained only on El 

Niño years, it would not be able to observe and learn from recurring phenomenon that do not 

normally occur on El Niño years.  Training only on El Niño years would arbitrarily deny the 

model the chance to learn from these phenomenon, which might become significant in the 

specific season we are attempting to study.  Moreover, by training on non- El Niño seasons, the 

model has the opportunity to distinguish between El Niño and Non- El Niño seasons and learn 

the degree of adjustment required in the context of the years leading into each season. 

Table 2. Observed (obs.) versus projected (proj.) PZI correlation coefficients with corresponding P-value for past El 

Niño events categorized as weak, moderate, strong and very strong showing the RNN model skill 

Weak CC (obs. vs. 

proj.)/Pvalue 

Moderate CC (obs. vs. 

proj.)/Pvalue 

Strong CC (obs. vs. 

proj.)/Pvalue 

Very 

Strong 

CC (obs. vs. 

proj.)/Pvalue  

1953-54 0.608/0.0179 1951-52 0.822/0.0005 1957-58 0.837/0.0003 1982-83 0.623/0.0156 

1958-59 0.837/0.0003 1963-64 0.892/0.0000 1965-66 0.869/0.0001 1997-98 0.870/0.0001 

1968-69 0.556/0.0302 1986-87 0.873/0.0001 1972-73 0.694/0.0061   

1969-70 0.575/0.0253 1991-92 0.332/0.1459     

1976-77 0.483/0.0559 2002-03 0.892/0.0000     

1979-80 0.688/0.0067       

1994-95 0.584/0.0232       

2004-05 0.937/0.0000       

2006-07 0.880/0.0000       

From the above table it is clear that model showed some skill towards the majority of El Niño 

years regardless of their strength. The correlation coefficients varied around 0.7 which is quite 
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similar and slightly higher than our validation data that was presented in Figure 2. We did not 

include 2009-2010, 2015-2016 in this analysis as they are part of the validation dataset used in 

our forecast model.  

5 Conclusions 

This paper addressed the rationale of using PZI as a significant precipitation indictor to 

address the anticipated heavy rain over Southern California driven by the strong 2015-2016 El 

Niño season. By investigating many ANN models, utilizing proven effective RNN configurations 

and applying them to analyze over a century of monthly PZI data, it is shown with strong 

confidence that precipitation associated with the 2015-2016 El Niño season is currently and will 

continue to be weaker than that of the historic 1997-1998 El Niño season. From this, we 

anticipate that drought conditions will continue to persist (albeit at an alleviated level) beyond 

this winter. These forecasts are made with a model that is well tested with significant high 

correlations on a ten-year validation set, with p-values < 10
-6

 for predictions up to three months 

into the future. Such projections are confirmed through current observed precipitation levels and 

PZI values for 2016 as compared to those of the 1997-1998 season.   
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